RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 089, 18 стр. (Mi sigma342)

Эта публикация цитируется в 30 статьях

A Probablistic Origin for a New Class of Bivariate Polynomials

Michael R. Hoare, Mizan Rahmana

a School of Mathematics and Statistics, Carleton University, Ottawa, ON K1S 5B6, Canada

Аннотация: We present here a probabilistic approach to the generation of new polynomials in two discrete variables. This extends our earlier work on the “classical” orthogonal polynomials in a previously unexplored direction, resulting in the discovery of an exactly soluble eigenvalue problem corresponding to a bivariate Markov chain with a transition kernel formed by a convolution of simple binomial and trinomial distributions. The solution of the relevant eigenfunction problem, giving the spectral resolution of the kernel, leads to what we believe to be a new class of orthogonal polynomials in two discrete variables. Possibilities for the extension of this approach are discussed.

Ключевые слова: cumulative Bernoulli trials; multivariate Markov chains; $9-j$ symbols; transition kernel; Askey–Wilson polynomials; eigenvalue problem; trinomial distribution; Krawtchouk polynomials.

MSC: 33C45; 60J05

Поступила: 15 сентября 2008 г.; в окончательном варианте 15 декабря 2008 г.; опубликована 19 декабря 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.089



Реферативные базы данных:
ArXiv: 0812.3879


© МИАН, 2024