RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 030, 16 стр. (Mi sigma376)

Эта публикация цитируется в 5 статьях

Nonlocal Operational Calculi for Dunkl Operators

Ivan H. Dimovski, Valentin Z. Hristov

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria

Аннотация: The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusiński type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_k)u=f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.

Ключевые слова: Dunkl operator; right inverse operator; Dunkl–Appell polynomials; convolution multiplier; multiplier fraction; Dunkl equation; nonlocal Cauchy problem; Heaviside algorithm; mean-periodic function.

MSC: 44A40; 44A35; 34K06

Поступила: 15 октября 2008 г.; в окончательном варианте 4 марта 2009 г.; опубликована 9 марта 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.030



Реферативные базы данных:
ArXiv: 0903.1609


© МИАН, 2024