RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 031, 12 стр. (Mi sigma377)

Эта публикация цитируется в 2 статьях

Differential and Functional Identities for the Elliptic Trilogarithm

Ian A. B. Strachan

Department of Mathematics, University of Glasgow, Glasgow G12 8QQ, UK

Аннотация: When written in terms of $\vartheta$-functions, the classical Frobenius–Stickelberger pseudo-addition formula takes a very simple form. Generalizations of this functional identity are studied, where the functions involved are derivatives (including derivatives with respect to the modular parameter) of the elliptic trilogarithm function introduced by Beilinson and Levin. A differential identity satisfied by this function is also derived. These generalized Frobenius–Stickelberger identities play a fundamental role in the development of elliptic solutions of the Witten–Dijkgraaf–Verlinde–Verlinde equations of associativity, with the simplest case reducing to the above mentioned differential identity.

Ключевые слова: Frobenius manifolds; WDVV equations; Jacobi groups; orbit spaces.

MSC: 11F55; 53B50; 53D45

Поступила: 25 ноября 2008 г.; в окончательном варианте 6 марта 2009 г.; опубликована 13 марта 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.031



Реферативные базы данных:
ArXiv: 0903.2425


© МИАН, 2024