RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 049, 21 стр. (Mi sigma395)

Эта публикация цитируется в 8 статьях

Hilbert–Schmidt Operators vs. Integrable Systems of Elliptic Calogero–Moser Type. III. The Heun Case

Simon N. M. Ruijsenaarsab

a Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
b Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

Аннотация: The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form $-d^2/dx^2+V(g;x)$, where the potential is an elliptic function depending on a coupling vector $g\in\mathbb R^4$. Alternatively, this operator arises from the $BC_1$ specialization of the $BC_N$ elliptic nonrelativistic Calogero–Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on $g$, we associate to this operator a self-adjoint operator $H(g)$ on the Hilbert space $\mathcal H=L^2([0,\omega_1],\,dx)$, where $2\omega_1$ is the real period of $V(g;x)$. For this association and a further analysis of $H(g)$, a certain Hilbert–Schmidt operator $\mathcal I(g)$ on $\mathcal H$ plays a critical role. In particular, using the intimate relation of $H(g)$ and $\mathcal I(g)$, we obtain a remarkable spectral invariance: In terms of a coupling vector $c\in\mathbb R^4$ that depends linearly on $g$, the spectrum of $H(g(c))$ is invariant under arbitrary permutations $\sigma(c)$, $\sigma\in S_4$.

Ключевые слова: Heun equation; Hilbert–Schmidt operators; spectral invariance.

MSC: 33E05; 33E10; 46N50; 81Q05; 81Q10

Поступила: 19 января 2009 г.; опубликована 21 апреля 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.049



Реферативные базы данных:
ArXiv: 0904.3250


© МИАН, 2024