RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 072, 18 стр. (Mi sigma417)

Эта публикация цитируется в 2 статьях

Clifford Fibrations and Possible Kinematics

Alan S. McRae

Department of Mathematics, Washington and Lee University, Lexington, VA 24450-0303, USA

Аннотация: Following Herranz and Santander [Herranz F. J., Santander M., Mem. Real Acad. Cienc. Exact. Fis. Natur. Madrid 32 (1998), 59–84, physics/9702030] we will construct homogeneous spaces based on possible kinematical algebras and groups [Bacry H., Levy-Leblond J.-M., J. Math. Phys. 9 (1967), 1605–1614] and their contractions for 2-dimensional spacetimes. Our construction is different in that it is based on a generalized Clifford fibration: Following Penrose [Penrose R., Alfred A. Knopf, Inc., New York, 2005] we will call our fibration a Clifford fibration and not a Hopf fibration, as our fibration is a geometrical construction. The simple algebraic properties of the fibration describe the geometrical properties of the kinematical algebras and groups as well as the spacetimes that are derived from them. We develop an algebraic framework that handles all possible kinematic algebras save one, the static algebra.

Ключевые слова: Clifford fibration; Hopf fibration; kinematic.

MSC: 11E88; 15A66; 53A17

Поступила: 10 апреля 2009 г.; в окончательном варианте 19 июня 2009 г.; опубликована 14 июля 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.072



Реферативные базы данных:
ArXiv: 0907.2394


© МИАН, 2024