RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 075, 23 стр. (Mi sigma420)

Эта публикация цитируется в 3 статьях

Image Sampling with Quasicrystals

Mark Grundlanda, Jirí Paterab, Zuzana Masákovác, Neil A. Dodgsona

a Computer Laboratory, University of Cambridge, UK
b Centre de Recherches Mathématiques, Université de Montréal, Canada
c Department of Mathematics FNSPE, Czech Technical University in Prague, Czech Republic

Аннотация: We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.

Ключевые слова: computer graphics; image sampling; image representation;cut-and-project quasicrystal; non-periodic tiling; golden ratio;mosaic rendering.

MSC: 20H15; 52C23; 68U99; 82D25

Поступила: 15 декабря 2008 г.; в окончательном варианте 6 июля 2009 г.; опубликована 20 июля 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.075



Реферативные базы данных:
ArXiv: 0907.3604


© МИАН, 2024