RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 085, 21 стр. (Mi sigma431)

Эта публикация цитируется в 14 статьях

Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators

Miloslav Znojil

Nuclear Physics Institute ASCR, 250 68 Rez, Czech Republic

Аннотация: One-dimensional unitary scattering controlled by non-Hermitian (typically, $\mathcal{PT}$-symmetric) quantum Hamiltonians $H\neq H^\dagger$ is considered. Treating these operators via Runge–Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators $\Theta\neq I$ represented, in Runge–Kutta approximation, by $(2R-1)$-diagonal matrices.

Ключевые слова: cryptohermitian observables; unitary scattering; Runge–Kutta discretization; quasilocal metric operators.

MSC: 81U20; 46C15; 81Q10; 34L25; 47A40; 47B50

Поступила: 5 июля 2009 г.; в окончательном варианте 23 августа 2009 г.; опубликована 27 августа 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.085



Реферативные базы данных:
ArXiv: 0908.4045


© МИАН, 2024