Аннотация:
We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system ($\vee$-system) and we determine all trigonometric $\vee$-systems with up to five vectors. We show that generalized Calogero–Moser–Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric $\vee$-system; this inverts a one-way implication observed by Veselov for the rational solutions.