Эта публикация цитируется в
29 статьях
Factor-Group-Generated Polar Spaces and (Multi-)Qudits
Hans Havlicekab,
Boris Odehnalb,
Metod Sanigaac a Center for Interdisciplineary Research (ZiF), University of Bielefeld, D-33615 Bielefeld, Germany
b Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10/104, A-1040 Wien, Austria
c Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, Slovak Republic
Аннотация:
Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We
introduce gradually necessary and sufficient conditions to be met in order to carry out the following programme: Given a group
$\mathbf G$, we first construct vector spaces over
$\mathrm{GF}(p)$,
$p$ a prime, by factorising
$\mathbf G$ over appropriate normal subgroups. Then, by expressing
$\mathrm{GF}(p)$ in terms of the commutator subgroup of
$\mathbf G$, we construct alternating bilinear forms, which reflect whether or not two elements of
$\mathbf G$ commute. Restricting to
$p=2$, we search for “refinements” in terms of quadratic forms, which capture the fact whether or not the order of an element of
$\mathbf G$ is
$\leq 2$. Such
factor-group-generated vector spaces admit a natural reinterpretation in the language of symplectic and orthogonal polar spaces, where each point becomes a “condensation” of several distinct elements of
$\mathbf G$. Finally, several well-known physical examples (single- and two-qubit Pauli groups, both the real
and complex case) are worked out in detail to illustrate the fine traits of the formalism.
Ключевые слова:
groups; symplectic and orthogonal polar spaces; geometry of generalised Pauli groups.
MSC: 20C35;
51A50;
81R05 Поступила: 19 августа 2009 г.; в окончательном варианте
2 октября 2009 г.; опубликована
13 октября 2009 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2009.096