RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 097, 22 стр. (Mi sigma443)

Эта публикация цитируется в 1 статье

Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2

Christine Scharlach

Technische Universität Berlin, Fak. II, Inst. f. Mathematik, MA 8-3, 10623 Berlin, Germany

Аннотация: An affine hypersurface $M$ is said to admit a pointwise symmetry, if there exists a subgroup $G$ of $\operatorname{Aut}(T_p M)$ for all $p\in M$, which preserves (pointwise) the affine metric $h$, the difference tensor $K$ and the affine shape operator $S$. Here, we consider 3-dimensional indefinite affine hyperspheres, i.e.  $S= H\operatorname{Id}$ (and thus $S$ is trivially preserved). In Part 1 we found the possible symmetry groups $G$ and gave for each $G$ a canonical form of $K$. We started a classification by showing that hyperspheres admitting a pointwise $\mathbb Z_2\times\mathbb Z_2$ resp. $\mathbb R$-symmetry are well-known, they have constant sectional curvature and Pick invariant $J<0$ resp. $J=0$. Here, we continue with affine hyperspheres admitting a pointwise $\mathbb Z_3$- or $SO(2)$-symmetry. They turn out to be warped products of affine spheres ($\mathbb Z_3$) or quadrics ($SO(2)$) with a curve.

Ключевые слова: affine hyperspheres; indefinite affine metric; pointwise symmetry; affine differential geometry; affine spheres; warped products.

MSC: 53A15; 53B30

Поступила: 8 мая 2009 г.; в окончательном варианте 6 октября 2009 г.; опубликована 19 октября 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.097



Реферативные базы данных:
ArXiv: 0910.3609


© МИАН, 2024