RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 098, 27 стр. (Mi sigma444)

Эта публикация цитируется в 2 статьях

Contact Geometry of Curves

Peter J. Vassiliou

Faculty of Information Sciences and Engineering, University of Canberra, 2601 Australia

Аннотация: Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group $G$. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the $G$-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds $(M,g)$ is described. For the special case in which the isometries of $(M,g)$ act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in $M$. The inputs required for the construction consist only of the metric $g$ and a parametrisation of structure group $SO(n)$; the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space $H^3$ and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.

Ключевые слова: moving frames; Goursat normal forms; curves; Riemannian manifolds.

MSC: 53A35; 53A55; 58A15; 58A20; 58A30

Поступила: 7 мая 2009 г.; в окончательном варианте 16 октября 2009 г.; опубликована 19 октября 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.098



Реферативные базы данных:
ArXiv: 0910.3646


© МИАН, 2024