RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 106, 17 стр. (Mi sigma452)

Эта публикация цитируется в 2 статьях

Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matrix

Gilles Regniers, Joris Van der Jeugt

Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium

Аннотация: In a system of coupled harmonic oscillators, the interaction can be represented by a real, symmetric and positive definite interaction matrix. The quantization of a Hamiltonian describing such a system has been done in the canonical case. In this paper, we take a more general approach and look at the system as a Wigner quantum system. Hereby, one does not assume the canonical commutation relations, but instead one just requires the compatibility between the Hamilton and Heisenberg equations. Solutions of this problem are related to the Lie superalgebras $\mathfrak{gl}(1|n)$ and $\mathfrak{osp}(1|2n)$. We determine the spectrum of the considered Hamiltonian in specific representations of these Lie superalgebras and discuss the results in detail. We also make the connection with the well-known canonical case.

Ключевые слова: Wigner quantization; solvable Hamiltonians; Lie superalgebra representations.

MSC: 17B60; 17B80; 81R05; 81R12

Поступила: 22 сентября 2009 г.; в окончательном варианте 20 ноября 2009 г.; опубликована 24 ноября 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.106



Реферативные базы данных:
ArXiv: 0909.3697


© МИАН, 2024