RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 004, 34 стр. (Mi sigma461)

Эта публикация цитируется в 7 статьях

Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models

V. V. Kudryashov, Yu. A. Kurochkin, E. M. Ovsiyuk, V. M. Red'kov

Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

Аннотация: Motion of a classical particle in 3-dimensional Lobachevsky and Riemann spaces is studied in the presence of an external magnetic field which is analogous to a constant uniform magnetic field in Euclidean space. In both cases three integrals of motions are constructed and equations of motion are solved exactly in the special cylindrical coordinates on the base of the method of separation of variables. In Lobachevsky space there exist trajectories of two types, finite and infinite in radial variable, in Riemann space all motions are finite and periodical. The invariance of the uniform magnetic field in tensor description and gauge invariance of corresponding 4-potential description is demonstrated explicitly. The role of the symmetry is clarified in classification of all possible solutions, based on the geometric symmetry group, $\mathrm{SO}(3,1)$ and $\mathrm{SO}(4)$ respectively.

Ключевые слова: Lobachevsky and Riemann spaces; magnetic field; mechanics in curved space; geometric and gauge symmetry; dynamical systems.

MSC: 37J35; 70G60; 70H06; 74H05

Поступила: 20 июля 2009 г.; в окончательном варианте 29 декабря 2009 г.; опубликована 10 января 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.004



Реферативные базы данных:
ArXiv: 1001.1550


© МИАН, 2024