RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 014, 36 стр. (Mi sigma471)

Эта публикация цитируется в 10 статьях

$Q$-system Cluster Algebras, Paths and Total Positivity

Philippe Di Francescoa, Rinat Kedemb

a Institut de Physique Théorique du Commissariatà l'Energie Atomique, Unité de Recherche associée du CNRS, CEA Saclay/IPhT/Bat 774, F-91191 Gif sur Yvette Cedex, France
b Department of Mathematics, University of Illinois Urbana, IL 61801, USA

Аннотация: In the first part of this paper, we provide a concise review of our method of solution of the $A_r$ $Q$-systems in terms of the partition function of paths on a weighted graph. In the second part, we show that it is possible to modify the graphs and transfer matrices so as to provide an explicit connection to the theory of planar networks introduced in the context of totally positive matrices by Fomin and Zelevinsky. As an illustration of the further generality of our method, we apply it to give a simple solution for the rank 2 affine cluster algebras studied by Caldero and Zelevinsky.

Ключевые слова: cluster algebras; total positivity.

MSC: 05E10; 13F16; 82B20

Поступила: 15 октября 2009 г.; в окончательном варианте 15 января 2010 г.; опубликована 2 февраля 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.014



Реферативные базы данных:
ArXiv: 0906.3421


© МИАН, 2024