RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 017, 22 стр. (Mi sigma474)

Эта публикация цитируется в 2 статьях

Solitary Waves in Massive Nonlinear $\mathbb S^N$-Sigma Models

Alberto Alonso Izquierdo, Miguel Ángel González León, Marina de la Torre Mayado

University of Salamanca

Аннотация: The solitary waves of massive $(1+1)$-dimensional nonlinear $\mathbb S^N$-sigma models are unveiled. It is shown that the solitary waves in these systems are in one-to-one correspondence with the separatrix trajectories in the repulsive $N$-dimensional Neumann mechanical problem. There are topological (heteroclinic trajectories) and non-topological (homoclinic trajectories) kinks. The stability of some embedded sine-Gordon kinks is discussed by means of the direct estimation of the spectra of the second-order fluctuation operators around them, whereas the instability of other topological and non-topological kinks is established applying the Morse index theorem.

Ключевые слова: solitary waves; nonlinear sigma models.

MSC: 35Q51; 81T99

Поступила: 7 декабря 2009 г.; опубликована 9 февраля 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.017



Реферативные базы данных:
ArXiv: 1002.1932


© МИАН, 2024