RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 026, 17 стр. (Mi sigma483)

Эта публикация цитируется в 12 статьях

Spectral Distances: Results for Moyal Plane and Noncommutative Torus

Eric Cagnache, Jean-Christophe Wallet

Laboratoire de Physique Théorique, Bât. 210, CNRS, Université Paris-Sud 11, F-91405 Orsay Cedex, France

Аннотация: The spectral distance for noncommutative Moyal planes is considered in the framework of a non compact spectral triple recently proposed as a possible noncommutative analog of non compact Riemannian spin manifold. An explicit formula for the distance between any two elements of a particular class of pure states can be determined. The corresponding result is discussed. The existence of some pure states at infinite distance signals that the topology of the spectral distance on the space of states is not the weak $*$ topology. The case of the noncommutative torus is also considered and a formula for the spectral distance between some states is also obtained.

Ключевые слова: noncommutative geometry; non-compact spectral triples; spectral distance; noncommutative torus; Moyal planes.

MSC: 58B34; 46L52; 81T75

Поступила: 31 октября 2009 г.; в окончательном варианте 20 марта 2010 г.; опубликована 24 марта 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.026



Реферативные базы данных:
ArXiv: 0912.4185


© МИАН, 2024