RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 043, 25 стр. (Mi sigma500)

Эта публикация цитируется в 4 статьях

Supersymmetry of Affine Toda Models as Fermionic Symmetry Flows of the Extended mKdV Hierarchy

David M. Schmidtt

Universidade Estadual Paulista

Аннотация: We couple two copies of the supersymmetric mKdV hierarchy by means of the algebraic dressing technique. This allows to deduce the whole set of $(N,N)$ supersymmetry transformations of the relativistic sector of the extended mKdV hierarchy and to interpret them as fermionic symmetry flows. The construction is based on an extended Riemann–Hilbert problem for affine Kac–Moody superalgebras with a half-integer gradation. A generalized set of relativistic-like fermionic local current identities is introduced and it is shown that the simplest one, corresponding to the lowest isospectral times $t_{\pm 1}$ provides the supercharges generating rigid supersymmetry transformations in 2D superspace. The number of supercharges is equal to the dimension of the fermionic kernel of a given semisimple element $E\in\widehat{\mathfrak g}$ which defines both, the physical degrees of freedom and the symmetries of the model. The general construction is applied to the $N=(1,1)$ and $N=(2,2)$ sinh-Gordon models which are worked out in detail.

Ключевые слова: algebraic dressing method; supersymmetry flows; supersymmetric affine Toda models.

MSC: 81T60; 37K20; 37K10

Поступила: 10 декабря 2009 г.; в окончательном варианте 19 мая 2010 г.; опубликована 27 мая 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.043



Реферативные базы данных:
ArXiv: 0909.3109


© МИАН, 2024