RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 067, 47 стр. (Mi sigma524)

Эта публикация цитируется в 14 статьях

Modular Theory, Non-Commutative Geometry and Quantum Gravity

Paolo Bertozzinia, Roberto Contib, Wicharn Lewkeeratiyutkulc

a Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathumthani 12121, Thailand
b Dipartimento di Scienze, Università di Chieti-Pescara "G. D’Annunzio", Viale Pindaro 42, I-65127 Pescara, Italy
c Department of Mathematics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Аннотация: This paper contains the first written exposition of some ideas (announced in a previous survey) on an approach to quantum gravity based on Tomita–Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

Ключевые слова: modular theory; non-commutative geometry; spectral triple; category theory; quantum physics; space-time.

MSC: 46L87; 46L51; 46L10; 46M15; 18F99; 58B34; 81R60; 81T05; 83C65} \tableofcontents \renewcommand{\thefootnote}{\arabic{footnote}} \setcounter{footnote}{0

Поступила: 30 марта 2010 г.; в окончательном варианте 26 июля 2010 г.; опубликована 19 августа 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.067



Реферативные базы данных:
ArXiv: 1007.4094


© МИАН, 2024