RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 069, 15 стр. (Mi sigma526)

Эта публикация цитируется в 4 статьях

Balanced Metrics and Noncommutative Kähler Geometry

Sergio Lukić

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849, USA

Аннотация: In this paper we show how Einstein metrics are naturally described using the quantization of the algebra of functions $C^\infty(M)$ on a Kähler manifold $M$. In this setup one interprets $M$ as the phase space itself, equipped with the Poisson brackets inherited from the Kähler 2-form. We compare the geometric quantization framework with several deformation quantization approaches. We find that the balanced metrics appear naturally as a result of requiring the vacuum energy to be the constant function on the moduli space of semiclassical vacua. In the classical limit these metrics become Kähler–Einstein (when $M$ admits such metrics). Finally, we sketch several applications of this formalism, such as explicit constructions of special Lagrangian submanifolds in compact Calabi–Yau manifolds.

Ключевые слова: balanced metrics; geometric quantization; Kähler–Einstein.

MSC: 14J32; 32Q15; 32Q20; 53C25; 53D50

Поступила: 1 марта 2010 г.; в окончательном варианте 2 августа 2010 г.; опубликована 27 августа 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.069



Реферативные базы данных:
ArXiv: 0710.1304


© МИАН, 2024