RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 080, 9 стр. (Mi sigma538)

Эта публикация цитируется в 4 статьях

Quantum Integrable 1D anyonic Models: Construction through Braided Yang–Baxter Equation

Anjan Kundu

Theory Group \& CAMCS, Saha Institute of Nuclear Physics, Calcutta, India

Аннотация: Applying braided Yang–Baxter equation quantum integrable and Bethe ansatz solvable 1D anyonic lattice and field models are constructed. Along with known models we discover novel lattice anyonic and $q$-anyonic models as well as nonlinear Schrödinger equation (NLS) and the derivative NLS quantum field models involving anyonic operators, $N$-particle sectors of which yield the well known anyon gases, interacting through $\delta$ and derivative $\delta$-function potentials.

Ключевые слова: nonultralocal model; braided YBE; quantum integrability; 1D anyonic and $q$-anyonic lattice models; anyonic NLS and derivative NLS field models; algebraic Bethe ansatz.

MSC: 16T25; 20F36; 81R12

Поступила: 25 мая 2010 г.; в окончательном варианте 3 октября 2010 г.; опубликована 9 октября 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.080



Реферативные базы данных:
ArXiv: 1005.4603


© МИАН, 2024