Аннотация:
Applying braided Yang–Baxter equation quantum integrable and Bethe ansatz solvable 1D anyonic lattice and field models are constructed. Along with known models we discover novel lattice anyonic and $q$-anyonic models as well as nonlinear Schrödinger equation (NLS) and the derivative NLS quantum field models involving anyonic operators, $N$-particle sectors of which yield the well known anyon gases, interacting through $\delta$ and derivative $\delta$-function potentials.
Ключевые слова:nonultralocal model; braided YBE; quantum integrability; 1D anyonic and $q$-anyonic lattice models; anyonic NLS and derivative NLS field models; algebraic Bethe ansatz.