RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2010, том 6, 081, 17 стр. (Mi sigma539)

Singular Reduction of Generalized Complex Manifolds

Timothy E. Goldberg

Donald and Helen Schort School of Mathematics and Computing Sciences, Lenoir-Rhyne University, Hickory, North Carolina 28601, USA

Аннотация: In this paper, we develop results in the direction of an analogue of Sjamaar and Lerman's singular reduction of Hamiltonian symplectic manifolds in the context of reduction of Hamiltonian generalized complex manifolds (in the sense of Lin and Tolman). Specifically, we prove that if a compact Lie group acts on a generalized complex manifold in a Hamiltonian fashion, then the partition of the global quotient by orbit types induces a partition of the Lin–Tolman quotient into generalized complex manifolds. This result holds also for reduction of Hamiltonian generalized Kähler manifolds.

Ключевые слова: generalized complex manifold; Hamiltonian action; generalized complex quotient; Lin–Tolman quotient; singular reduction.

MSC: 53D20; 53D18; 53C15

Поступила: 24 марта 2010 г.; в окончательном варианте 6 октября 2010 г.; опубликована 9 октября 2010 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2010.081



Реферативные базы данных:
ArXiv: 1003.1773


© МИАН, 2024