RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 001, 13 стр. (Mi sigma559)

Эта публикация цитируется в 11 статьях

Bäcklund Transformations for the Kirchhoff Top

Orlando Ragniscoab, Federico Zulloab

a Dipartimento di Fisica Universitá Roma Tre
b Istituto Nazionale di Fisica Nucleare, Sezione di Roma, I-00146 Roma, Italy

Аннотация: We construct Bäcklund transformations (BTs) for the Kirchhoff top by taking advantage of the common algebraic Poisson structure between this system and the $sl(2)$ trigonometric Gaudin model. Our BTs are integrable maps providing an exact time-discretization of the system, inasmuch as they preserve both its Poisson structure and its invariants. Moreover, in some special cases we are able to show that these maps can be explicitly integrated in terms of the initial conditions and of the “iteration time” $n$. Encouraged by these partial results we make the conjecture that the maps are interpolated by a specific one-parameter family of hamiltonian flows, and present the corresponding solution. We enclose a few pictures where the orbits of the continuous and of the discrete flow are depicted.

Ключевые слова: Kirchhoff equations; Bäcklund transformations; integrable maps; Lax representation.

MSC: 37J35; 70H06; 70H15

Поступила: 20 июля 2010 г.; в окончательном варианте 14 декабря 2010 г.; опубликована 3 января 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.001



Реферативные базы данных:
ArXiv: 1007.2607


© МИАН, 2024