RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 033, 13 стр. (Mi sigma591)

Эта публикация цитируется в 15 статьях

An Exactly Solvable Spin Chain Related to Hahn Polynomials

Neli I. Stoilovaab, Joris Van der Jeugtb

a Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria
b Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium

Аннотация: We study a linear spin chain which was originally introduced by Shi et al. [<i>Phys. Rev. A</i> <b>71</b> (2005), 032309, 5 pages], for which the coupling strength contains a parameter $\alpha$ and depends on the parity of the chain site. Extending the model by a second parameter $\beta$, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters $(\alpha,\beta)$ and $(\alpha+1,\beta-1)$. The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a $q$-extension of this model.

Ключевые слова: linear spin chain; Hahn polynomial; state transfer.

MSC: 81P45; 33C45

Поступила: 25 января 2011 г.; в окончательном варианте 22 марта 2011 г.; опубликована 29 марта 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.033



Реферативные базы данных:
ArXiv: 1101.4469


© МИАН, 2024