RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 035, 21 стр. (Mi sigma593)

Эта публикация цитируется в 7 статьях

Revisiting the Symmetries of the Quantum Smorodinsky–Winternitz System in $D$ Dimensions

Christiane Quesne

Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles, Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

Аннотация: The $D$-dimensional Smorodinsky–Winternitz system, proposed some years ago by Evans, is re-examined from an algebraic viewpoint. It is shown to possess a potential algebra, as well as a dynamical potential one, in addition to its known symmetry and dynamical algebras. The first two are obtained in hyperspherical coordinates by introducing $D$ auxiliary continuous variables and by reducing a $2D$-dimensional harmonic oscillator Hamiltonian. The $\operatorname{su}(2D)$ symmetry and $\operatorname w(2D)\oplus_s\operatorname{sp}(4D,\mathbb R)$ dynamical algebras of this Hamiltonian are then transformed into the searched for potential and dynamical potential algebras of the Smorodinsky–Winternitz system. The action of generators on wavefunctions is given in explicit form for $D=2$.

Ключевые слова: Schrödinger equation; superintegrability; potential algebras; dynamical potential algebras.

MSC: 20C35; 81R05; 81R12

Поступила: 17 января 2011 г.; в окончательном варианте 25 марта 2011 г.; опубликована 2 апреля 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.035



Реферативные базы данных:
ArXiv: 1104.0294


© МИАН, 2024