RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 038, 12 стр. (Mi sigma596)

Эта публикация цитируется в 15 статьях

First Integrals of Extended Hamiltonians in $n+1$ Dimensions Generated by Powers of an Operator

Claudia Chanua, Luca Degiovannib, Giovanni Rastellib

a Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Milano, via Cozzi 53, Italia
b Formerly at Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italia

Аннотация: We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians $H$ obtained as one-dimensional extensions of natural (geodesic) $n$-dimensional Hamiltonians $L$. The Liouville integrability of $L$ implies the (minimal) superintegrability of $H$. We prove that, as a consequence of natural integrability conditions, it is necessary for the construction that the curvature of the metric tensor associated with $L$ is constant. As examples, the procedure is applied to one-dimensional $L$, including and improving earlier results, and to two and three-dimensional $L$, providing new superintegrable systems.

Ключевые слова: superintegrable Hamiltonian systems; polynomial first integrals; constant curvature; Hessian tensor.

MSC: 70H06; 70H33; 53C21

Поступила: 31 января 2011 г.; в окончательном варианте 3 апреля 2011 г.; опубликована 11 апреля 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.038



Реферативные базы данных:
ArXiv: 1101.5975


© МИАН, 2024