Аннотация:
Using the theory of Weyl structures, we give a natural generalization of the notion of essential conformal structures and conformal Killing fields to arbitrary parabolic geometries. We show that a parabolic structure is inessential whenever the automorphism group acts properly on the base space. As a corollary of the generalized Ferrand–Obata theorem proved by C. Frances, this proves a generalization of the “Lichnérowicz conjecture” for conformal Riemannian, strictly pseudo-convex CR, and quaternionic/octonionic contact manifolds in positive-definite signature. For an infinitesimal automorphism with a singularity, we give a generalization of the dictionary introduced by Frances for conformal Killing fields, which characterizes (local) essentiality via the so-called holonomy associated to a singularity of an infinitesimal automorphism.