RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 045, 22 стр. (Mi sigma603)

Эта публикация цитируется в 5 статьях

The Lattice Structure of Connection Preserving Deformations for $q$-Painlevé Equations I

Christopher M. Ormerod

La Trobe University, Department of Mathematics and Statistics, Bundoora VIC 3086, Australia

Аннотация: We wish to explore a link between the Lax integrability of the $q$-Painlevé equations and the symmetries of the $q$-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the $q$-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the $q$-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the $q$-Painlevé equations up to and including $q$-$\mathrm{P}_{\mathrm{VI}}$.

Ключевые слова: $q$-Painlevé; Lax pairs; $q$-Schlesinger transformations; connection; isomonodromy.

MSC: 34M55; 39A13

Поступила: 26 ноября 2010 г.; в окончательном варианте 3 мая 2011 г.; опубликована 7 мая 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.045



Реферативные базы данных:
ArXiv: 1010.3036


© МИАН, 2024