RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 048, 15 стр. (Mi sigma606)

Эта публикация цитируется в 29 статьях

Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform

Ángel Ballesterosa, Alberto Encisob, Francisco J. Herranza, Orlando Ragniscocd, Danilo Riglionicd

a Departamento de Física, Universidad de Burgos, E-09001 Burgos, Spain
b Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M), Consejo Superior de Investigaciones Cientícas, C/ Nicolás Cabrera 14-16, E-28049 Madrid, Spain
c Università degli Studi Roma Tre, Dipartimento di Fisica E. Amaldi
d Dipartimento di Fisica, Università di Roma Tre and Istituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma, Italy

Аннотация: The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler–Coloumb potentials, in order to obtain maximally superintegrable classical systems on $N$-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler–Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler–Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace–Runge–Lenz $N$-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented.

Ключевые слова: coupling constant metamorphosis; integrable systems; curvature; harmonic oscillator; Kepler–Coulomb; Fradkin tensor; Laplace–Runge–Lenz vector; Taub-NUT; Darboux surfaces.

MSC: 37J35; 70H06; 81R12

Поступила: 18 марта 2011 г.; в окончательном варианте 12 мая 2011 г.; опубликована 14 мая 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.048



Реферативные базы данных:
ArXiv: 1103.4554


© МИАН, 2024