RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 034, 8 стр. (Mi sigma62)

On Orthogonality Relations for Dual Discrete $q$-Ultraspherical Polynomials

Valentyna A. Grozaa, Ivan I. Kachurykb

a National Aviation University, 1 Komarov Ave., Kyiv, 03058 Ukraine
b Khmel'nyts'kyi National University, Khmel'nyts'kyi, Ukraine

Аннотация: The dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$ correspond to indeterminate moment problem and, therefore, have one-parameter family of extremal orthogonality relations. It is shown that special cases of dual discrete $q$-ultraspherical polynomials $D_n^{(s)}(\mu(x;s)|q)$, when $s=q^{-1}$ and $s=q$, are directly connected with $q^{-1}$-Hermite polynomials. These connections are given in an explicit form. Using these relations, all extremal orthogonality relations for these special cases of polynomials $D_n^{(s)}(\mu(x;s)|q)$ are found.

Ключевые слова: $q$-orthogonal polynomials; dual discrete $q$-ultraspherical polynomials; $q^{-1}$-Hermite polynomials; orthogonality relation.

MSC: 33D45; 81Q99

Поступила: 14 февраля 2006 г.; в окончательном варианте 28 февраля 2006 г.; опубликована 16 марта 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.034



Реферативные базы данных:
ArXiv: math.CA/0603408


© МИАН, 2024