RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 063, 18 стр. (Mi sigma621)

Balance Systems and the Variational Bicomplex

Serge Preston

Department of Mathematics and Statistics, Portland State University, Portland, OR, 97207-0751, USA

Аннотация: In this work we show that the systems of balance equations (balance systems) of continuum thermodynamics occupy a natural place in the variational bicomplex formalism. We apply the vertical homotopy decomposition to get a local splitting (in a convenient domain) of a general balance system as the sum of a Lagrangian part and a complemental “pure non-Lagrangian” balance system. In the case when derivatives of the dynamical fields do not enter the constitutive relations of the balance system, the “pure non-Lagrangian” systems coincide with the systems introduced by S. Godunov [Soviet Math. Dokl. 2 (1961), 947–948] and, later, asserted as the canonical hyperbolic form of balance systems in [Müller I., Ruggeri T., Rational extended thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, 1998].

Ключевые слова: variational bicomplex; balance equations.

MSC: 49Q99; 35Q80

Поступила: 27 января 2011 г.; в окончательном варианте 30 июня 2011 г.; опубликована 9 июля 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.063



Реферативные базы данных:
ArXiv: 1101.5375


© МИАН, 2024