RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 066, 10 стр. (Mi sigma624)

Эта публикация цитируется в 3 статьях

Exact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction

Stephen C. Ancoa, Sajid Alib, Thomas Wolfa

a Department of Mathematics, Brock University, St. Catharines, ON L2S 3A1 Canada
b School of Electrical Engineering and Computer Sciences, National University of Sciences and Technology, H-12 Campus, Islamabad 44000, Pakistan

Аннотация: A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables respectively consist of the invariants and differential invariants of a given one-dimensional group of point symmetries for the reaction-diffusion equation. With this group-foliation reduction method, solutions of the reaction-diffusion equation are obtained in an explicit form, including group-invariant similarity solutions and travelling-wave solutions, as well as dynamically interesting solutions that are not invariant under any of the point symmetries admitted by this equation.

Ключевые слова: semilinear heat equation; similarity reduction; exact solutions; group foliation; symmetry.

MSC: 35K58; 35C06; 35A25; 58J70; 34C14

Поступила: 5 марта 2011 г.; в окончательном варианте 3 июля 2011 г.; опубликована 12 июля 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.066



Реферативные базы данных:
ArXiv: 1105.5303


© МИАН, 2024