Эта публикация цитируется в
2 статьях
Four-Dimensional Spin Foam Perturbation Theory
João Faria Martinsa,
Aleksandar Mikovićbc a Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
b Departamento de Matemática, Universidade Lusófona de Humanidades e Tecnologia, Av do Campo Grande, 376, 1749-024 Lisboa, Portugal
c Grupo de Física Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
Аннотация:
We define a four-dimensional spin-foam perturbation theory for the
${\rm BF}$-theory with a
$B\wedge B$ potential term defined for a compact semi-simple Lie group
$G$ on a compact orientable 4-manifold
$M$. This is done by using the formal spin foam perturbative series coming from the spin-foam generating functional. We then regularize the terms in the perturbative series by passing to the category of representations of the quantum group
$U_q (\mathfrak{g})$ where
$\mathfrak{g}$ is the Lie algebra of
$G$ and
$q$ is a root of unity. The Chain–Mail formalism can be used to calculate the perturbative terms when the vector space of intertwiners
$\Lambda\otimes \Lambda \to A$, where
$A$ is the adjoint representation of
$\mathfrak{g}$, is 1-dimensional for each irrep
$\Lambda$. We calculate the partition function
$Z$ in the dilute-gas limit for a special class of triangulations of restricted local complexity, which we conjecture to exist on any 4-manifold
$M$. We prove that the first-order perturbative contribution vanishes for finite triangulations, so that we define a dilute-gas limit by using the second-order contribution. We show that
$Z$ is an analytic continuation of the Crane–Yetter partition function. Furthermore, we relate
$Z$ to the partition function for the
$F\wedge F$ theory.
Ключевые слова:
spin foam models; BF-theory; spin networks; dilute-gas limit; Crane–Yetter invariant; spin-foam perturbation theory.
MSC: 81T25;
81T45;
57R56 Поступила: 3 июня 2011 г.; в окончательном варианте
23 сентября 2011 г.; опубликована
11 октября 2011 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2011.094