RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 107, 24 стр. (Mi sigma665)

Эта публикация цитируется в 57 статьях

Properties of the Exceptional ($X_{\ell}$) Laguerre and Jacobi Polynomials

Choon-Lin Hoa, Satoru Odakeb, Ryu Sasakic

a Department of Physics, Tamkang University, Tamsui 251, Taiwan (R.O.C.)
b Department of Physics, Shinshu University, Matsumoto 390-8621, Japan
c Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

Аннотация: We present various results on the properties of the four infinite sets of the exceptional $X_{\ell}$ polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414–417; Phys. Lett. B 684 (2010), 173–176]. These $X_{\ell}$ polynomials are global solutions of second order Fuchsian differential equations with $\ell+3$ regular singularities and their confluent limits. We derive equivalent but much simpler looking forms of the $X_{\ell}$ polynomials. The other subjects discussed in detail are: factorisation of the Fuchsian differential operators, shape invariance, the forward and backward shift operations, invariant polynomial subspaces under the Fuchsian differential operators, the Gram–Schmidt orthonormalisation procedure, three term recurrence relations and the generating functions for the $X_{\ell}$ polynomials.

Ключевые слова: exceptional orthogonal polynomials, Gram–Schmidt process, Rodrigues formulas, generating functions.

MSC: 42C05; 33E30; 81Q05

Поступила: 18 апреля 2011 г.; в окончательном варианте 19 ноября 2011 г.; опубликована 25 ноября 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.107



Реферативные базы данных:
ArXiv: 0912.5447


© МИАН, 2024