RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2011, том 7, 117, 23 стр. (Mi sigma675)

Эта публикация цитируется в 5 статьях

Relations in Grassmann Algebra Corresponding to Three- and Four-Dimensional Pachner Moves

Igor G. Korepanov

Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Str., Moscow 107996, Russia

Аннотация: New algebraic relations are presented, involving anticommuting Grassmann variables and Berezin integral, and corresponding naturally to Pachner moves in three and four dimensions. These relations have been found experimentally – using symbolic computer calculations; their essential new feature is that, although they can be treated as deformations of relations corresponding to torsions of acyclic complexes, they can no longer be explained in such terms. In the simpler case of three dimensions, we define an invariant, based on our relations, of a piecewise-linear manifold with triangulated boundary, and present example calculations confirming its nontriviality.

Ключевые слова: Pachner moves, Grassmann algebras, algebraic topology.

MSC: 15A75; 55-04; 57M27, 57Q10; 57R56

Поступила: 15 мая 2011 г.; в окончательном варианте 16 декабря 2011 г.; опубликована 18 декабря 2011 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2011.117



Реферативные базы данных:
ArXiv: 1105.0782


© МИАН, 2024