Аннотация:
Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in $1+1$ dimension and in $2+1$ dimension. Especially in the $(2+1)$-dimensional case, the corresponding system can be extended to $2\times 2$ matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.