RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 008, 14 стр. (Mi sigma685)

Эта публикация цитируется в 10 статьях

Discrete spectral transformations of skew orthogonal polynomials and associated discrete integrable systems

Hiroshi Miki, Hiroaki Goda, Satoshi Tsujimoto

Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Sakyo-Ku, Kyoto 606 8501, Japan

Аннотация: Discrete spectral transformations of skew orthogonal polynomials are presented. From these spectral transformations, it is shown that the corresponding discrete integrable systems are derived both in $1+1$ dimension and in $2+1$ dimension. Especially in the $(2+1)$-dimensional case, the corresponding system can be extended to $2\times 2$ matrix form. The factorization theorem of the Christoffel kernel for skew orthogonal polynomials in random matrix theory is presented as a by-product of these transformations.

Ключевые слова: skew orthogonal polynomials, discrete integrable systems, discrete coupled KP equation, Pfaff lattice, Christoffel–Darboux kernel.

MSC: 42C05; 35C05; 37K60; 15B52

Поступила: 1 декабря 2011 г.; в окончательном варианте 20 февраля 2012 г.; опубликована 29 февраля 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.008



Реферативные базы данных:
ArXiv: 1111.7262


© МИАН, 2024