RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 020, 78 стр. (Mi sigma697)

Эта публикация цитируется в 233 статьях

Colored tensor models – a review

Razvan Guraua, James P. Ryanb

a Perimeter Institute for Theoretical Physics, 31 Caroline St. N, ON N2L 2Y5, Waterloo, Canada
b MPI für Gravitationsphysik, Albert Einstein Institute, Am Mühlenberg 1, D-14476 Potsdam, Germany

Аннотация: Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a $1/N$ expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger–Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions), non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.

Ключевые слова: colored tensor models, $1/N$ expansion.

MSC: 05C15; 05C75; 81Q30; 81T17; 81T18; 83C27; 83C45

Поступила: 5 октября 2011 г.; в окончательном варианте 13 марта 2012 г.; опубликована 10 апреля 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.020



Реферативные базы данных:
ArXiv: 1109.4812


© МИАН, 2024