RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 022, 20 стр. (Mi sigma699)

Эта публикация цитируется в 7 статьях

Conformally equivariant quantization – a complete classification

Jean-Philippe Michel

University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City, Luxembourg

Аннотация: Conformally equivariant quantization is a peculiar map between symbols of real weight $\delta$ and differential operators acting on tensor densities, whose real weights are designed by $\lambda$ and $\lambda+\delta$. The existence and uniqueness of such a map has been proved by Duval, Lecomte and Ovsienko for a generic weight $\delta$. Later, Silhan has determined the critical values of $\delta$ for which unique existence is lost, and conjectured that for those values of $\delta$ existence is lost for a generic weight $\lambda$. We fully determine the cases of existence and uniqueness of the conformally equivariant quantization in terms of the values of $\delta$ and $\lambda$. Namely, (i) unique existence is lost if and only if there is a nontrivial conformally invariant differential operator on the space of symbols of weight $\delta$, and (ii) in that case the conformally equivariant quantization exists only for a finite number of $\lambda$, corresponding to nontrivial conformally invariant differential operators on $\lambda$-densities. The assertion (i) is proved in the more general context of IFFT (or AHS) equivariant quantization.

Ключевые слова: quantization, (bi-)differential operators, conformal invariance, Lie algebra cohomology.

MSC: 53A55; 53A30; 17B56; 47E05

Поступила: 29 июля 2011 г.; в окончательном варианте 11 апреля 2012 г.; опубликована 15 апреля 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.022



Реферативные базы данных:
ArXiv: 1102.4065


© МИАН, 2024