RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 029, 9 стр. (Mi sigma706)

Orbit representations from linear mod 1 transformations

Carlos Correia Ramosa, Nuno Martinsb, Paulo R. Pintob

a Centro de Investigação em Matemática e Aplicações, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
b Department of Mathematics, CAMGSD, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Аннотация: We show that every point $x_0\in [0,1]$ carries a representation of a $C^*$-algebra that encodes the orbit structure of the linear mod 1 interval map $f_{\beta,\alpha}(x)=\beta x +\alpha$. Such $C^*$-algebra is generated by partial isometries arising from the subintervals of monotonicity of the underlying map $f_{\beta,\alpha}$. Then we prove that such representation is irreducible. Moreover two such of representations are unitarily equivalent if and only if the points belong to the same generalized orbit, for every $\alpha\in [0,1[$ and $\beta\geq 1$.

Ключевые слова: interval maps, symbolic dynamics, $C^*$-algebras, representations of algebras.

MSC: 46L55, 37B10, 46L05

Поступила: 14 марта 2012 г.; в окончательном варианте 9 мая 2012 г.; опубликована 16 мая 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.029



Реферативные базы данных:
ArXiv: 1205.3553


© МИАН, 2025