RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 039, 17 стр. (Mi sigma716)

Эта публикация цитируется в 4 статьях

Some remarks on very-well-poised ${}_8\phi_7$ series

Jasper V. Stokman

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Аннотация: Nonpolynomial basic hypergeometric eigenfunctions of the Askey–Wilson second order difference operator are known to be expressible as very-well-poised ${}_8\phi_7$ series. In this paper we use this fact to derive various basic hypergeometric and theta function identities. We relate most of them to identities from the existing literature on basic hypergeometric series. This leads for example to a new derivation of a known quadratic transformation formula for very-well-poised ${}_8\phi_7$ series. We also provide a link to Chalykh's theory on (rank one, BC type) Baker–Akhiezer functions.

Ключевые слова: very-well-poised basic hypergeometric series, Askey–Wilson functions, quadratic transformation formulas, theta functions.

MSC: 33D15; 33D45

Поступила: 5 апреля 2012 г.; в окончательном варианте 18 июня 2012 г.; опубликована 27 июня 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.039



Реферативные базы данных:
ArXiv: 1204.0254


© МИАН, 2024