RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 042, 30 стр. (Mi sigma719)

Эта публикация цитируется в 2 статьях

On the orthogonality of $q$-classical polynomials of the Hahn class

Renato Álvarez-Nodarsea, Rezan Sevinik Adigüzelb, Hasan Taşelib

a IMUS & Departamento de Análisis Matemático, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla, Spain
b Department of Mathematics, Middle East Technical University (METU), 06531, Ankara, Turkey

Аннотация: The central idea behind this review article is to discuss in a unified sense the orthogonality of all possible polynomial solutions of the $q$-hypergeometric difference equation on a $q$-linear lattice by means of a qualitative analysis of the $q$-Pearson equation. To be more specific, a geometrical approach has been used by taking into account every possible rational form of the polynomial coefficients in the $q$-Pearson equation, together with various relative positions of their zeros, to describe a desired $q$-weight function supported on a suitable set of points. Therefore, our method differs from the standard ones which are based on the Favard theorem, the three-term recurrence relation and the difference equation of hypergeometric type. Our approach enables us to extend the orthogonality relations for some well-known $q$-polynomials of the Hahn class to a larger set of their parameters.

Ключевые слова: $q$-polynomials, orthogonal polynomials on $q$-linear lattices, $q$-Hahn class.

MSC: 33D45; 42C05

Поступила: 29 июля 2011 г.; в окончательном варианте 2 июля 2012 г.; опубликована 11 июля 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.042



Реферативные базы данных:
ArXiv: 1107.2423


© МИАН, 2024