RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 061, 19 стр. (Mi sigma738)

Эта публикация цитируется в 17 статьях

Spectral analysis of certain Schrödinger operators

Mourad E.H. Ismaila, Erik Koelinkb

a Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
b Radboud Universiteit, IMAPP, FNWI, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands

Аннотация: The $J$-matrix method is extended to difference and $q$-difference operators and is applied to several explicit differential, difference, $q$-difference and second order Askey–Wilson type operators. The spectrum and the spectral measures are discussed in each case and the corresponding eigenfunction expansion is written down explicitly in most cases. In some cases we encounter new orthogonal polynomials with explicit three term recurrence relations where nothing is known about their explicit representations or orthogonality measures. Each model we analyze is a discrete quantum mechanical model in the sense of Odake and Sasaki [J. Phys. A: Math. Theor. 44 (2011), 353001, 47 pages].

Ключевые слова: $J$-matrix method; discrete quantum mechanics; diagonalization; tridiagonalization; Laguere polynomials; Meixner polynomials; ultraspherical polynomials; continuous dual Hahn polynomials; ultraspherical (Gegenbauer) polynomials; Al-Salam–Chihara polynomials; birth and death process polynomials; shape invariance; zeros.

MSC: 30E05; 33C45; 39A10; 42C05; 44A60

Поступила: 7 мая 2012 г.; в окончательном варианте 12 сентября 2012 г.; опубликована 15 сентября 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.061



Реферативные базы данных:
ArXiv: 1205.0821


© МИАН, 2024