RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2006, том 2, 046, 17 стр. (Mi sigma74)

Эта публикация цитируется в 5 статьях

Scale-Dependent Functions, Stochastic Quantization and Renormalization

Mikhail V. Altaiskyab

a Space Research Institute RAS, Profsoyuznaya 84/32, Moscow, 117997 Russia
b Joint Institute for Nuclear Research, Dubna, 141980 Russia

Аннотация: We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions $\phi(b)\in L^2(\mathbb R^d)$ to the theory of functions that depend on coordinate $b$ and resolution $a$. In the simplest case such field theory turns out to be a theory of fields $\phi_a(b,\cdot)$ defined on the affine group $G:x'=ax+b$, $a>0,x,b\in\mathbb R^d$, which consists of dilations and translation of Euclidean space. The fields $\phi_a(b,\cdot)$ are constructed using the continuous wavelet transform. The parameters of the theory can explicitly depend on the resolution $a$. The proper choice of the scale dependence $g=g(a)$ makes such theory free of divergences by construction.

Ключевые слова: wavelets; quantum field theory; stochastic quantization; renormalization.

MSC: 37E20; 42C40; 81T16; 81T17

Поступила: 25 ноября 2005 г.; в окончательном варианте 7 апреля 2006 г.; опубликована 24 апреля 2006 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2006.046



Реферативные базы данных:
ArXiv: hep-th/0604170


© МИАН, 2025