RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 066, 29 стр. (Mi sigma743)

Эта публикация цитируется в 3 статьях

A new class of solvable many-body problems

Francesco Calogeroab, Ge Yiab

a Physics Department, University of Rome "La Sapienza", Italy
b Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Italy

Аннотация: A new class of solvable $N$-body problems is identified. They describe $N$ unit-mass point particles whose time-evolution, generally taking place in the complex plane, is characterized by Newtonian equations of motion “of goldfish type” (acceleration equal force, with specific velocity-dependent one-body and two-body forces) featuring several arbitrary coupling constants. The corresponding initial-value problems are solved by finding the eigenvalues of a time-dependent $N\times N$ matrix $U(t)$ explicitly defined in terms of the initial positions and velocities of the $N$ particles. Some of these models are asymptotically isochronous, i.e. in the remote future they become completely periodic with a period $T$ independent of the initial data (up to exponentially vanishing corrections). Alternative formulations of these models, obtained by changing the dependent variables from the $N$ zeros of a monic polynomial of degree $N$ to its $N$ coefficients, are also exhibited.

Ключевые слова: integrable dynamical systems; solvable dynamical systems; solvable Newtonian many-body problems; integrable Newtonian many-body problems; isochronous dynamical systems.

MSC: 70F10; 70H06; 37J35; 37K10

Поступила: 27 июня 2012 г.; в окончательном варианте 20 сентября 2012 г.; опубликована 2 октября 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.066



Реферативные базы данных:
ArXiv: 1210.0651


© МИАН, 2024