RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2012, том 8, 088, 16 стр. (Mi sigma765)

Эта публикация цитируется в 7 статьях

Nekrasov's Partition Function and Refined Donaldson–Thomas Theory: the Rank One Case

Balázs Szendrői

Mathematical Institute, University of Oxford, UK

Аннотация: This paper studies geometric engineering, in the simplest possible case of rank one (Abelian) gauge theory on the affine plane and the resolved conifold. We recall the identification between Nekrasov's partition function and a version of refined Donaldson–Thomas theory, and study the relationship between the underlying vector spaces. Using a purity result, we identify the vector space underlying refined Donaldson–Thomas theory on the conifold geometry as the exterior space of the space of polynomial functions on the affine plane, with the (Lefschetz) $\mathrm{SL}(2)$-action on the threefold side being dual to the geometric $\mathrm{SL}(2)$-action on the affine plane. We suggest that the exterior space should be a module for the (explicitly not yet known) cohomological Hall algebra (algebra of BPS states) of the conifold.

Ключевые слова: geometric engineering; Donaldson–Thomas theory; resolved conifold.

MSC: 14J32

Поступила: 12 июня 2012 г.; в окончательном варианте 5 ноября 2012 г.; опубликована 17 ноября 2012 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2012.088



Реферативные базы данных:
ArXiv: 1210.5181


© МИАН, 2024