Эта публикация цитируется в
44 статьях
Minkowski Polynomials and Mutations
Mohammad Akhtara,
Tom Coatesa,
Sergey Galkinb,
Alexander M. Kasprzyka a Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
b Universität Wien, Fakultät für Mathematik, Garnisongasse 3/14, A-1090 Wien, Austria
Аннотация:
Given a Laurent polynomial
$f$, one can form the period of
$f$: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with cluster algebras. We propose a higher-dimensional analog of mutation acting on Laurent polynomials
$f$ in
$n$ variables. In particular we give a combinatorial description of mutation acting on the Newton polytope
$P$ of
$f$, and use this to establish many basic facts about mutations. Mutations can be understood combinatorially in terms of Minkowski rearrangements of slices of
$P$, or in terms of piecewise-linear transformations acting on the dual polytope
$P^*$ (much like cluster transformations). Mutations map Fano polytopes to Fano polytopes, preserve the Ehrhart series of the dual polytope, and preserve the period of
$f$. Finally we use our results to show that Minkowski polynomials, which are a family of Laurent polynomials that give mirror partners to many three-dimensional Fano manifolds, are connected by a sequence of mutations if and only if they have the same period.
Ключевые слова:
mirror symmetry; Fano manifold; Laurent polynomial; mutation; cluster transformation; Minkowski decomposition; Minkowski polynomial; Newton polytope; Ehrhart series; quasi-period collapse.
MSC: 52B20;
16S34;
14J33 Поступила: 14 июня 2012 г.; в окончательном варианте
1 декабря 2012 г.; опубликована
8 декабря 2012 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2012.094