Эта публикация цитируется в
3 статьях
Vector-Valued Polynomials and a Matrix Weight Function with $B_2$-Action
Charles F. Dunkl Department of Mathematics, University of Virginia,
PO Box 400137, Charlottesville VA 22904-4137, USA
Аннотация:
The structure of orthogonal polynomials on
$\mathbb{R}^{2}$ with the weight function $\vert x_{1}^{2}-x_{2}^{2}\vert ^{2k_{0}}\vert x_{1}x_{2}\vert ^{2k_{1}}e^{-( x_{1}^{2}+x_{2}^{2}) /2}$ is based on the Dunkl operators of type
$B_{2}$. This refers to the full symmetry group of the square, generated by reflections in the lines
$x_{1}=0$ and
$x_{1}-x_{2}=0$. The weight function is integrable if
$k_{0},k_{1},k_{0} +k_{1}>-\frac{1}{2}$. Dunkl operators can be defined for polynomials taking values in a module of the associated reflection group, that is, a vector space on which the group has an irreducible representation. The unique
$2$-dimensional representation of the group
$B_{2}$ is used here. The specific operators for this group and an analysis of the inner products on the harmonic vector-valued polynomials are presented in this paper. An orthogonal basis for the harmonic polynomials is constructed, and is used to define an exponential-type kernel. In contrast to the ordinary scalar case the inner product structure is positive only when
$( k_{0},k_{1}) $ satisfy
$-\frac{1}{2}<k_{0}\pm k_{1}<\frac{1}{2}$. For vector polynomials
$( f_{i}) _{i=1}^{2}$,
$( g_{i}) _{i=1}^{2}$ the inner product has the form $\iint_{\mathbb{R}^{2}}f(x) K(x) g(x) ^{T}e^{-( x_{1}^{2}+x_{2}^{2}) /2}dx_{1}dx_{2}$ where the matrix function
$K(x)$ has to satisfy various transformation and boundary conditions. The matrix
$K$ is expressed in terms of hypergeometric functions.
Ключевые слова:
matrix Gaussian weight function; harmonic polynomials.
MSC: 33C52;
42C05;
33C05 Поступила: 16 октября 2012 г.; в окончательном варианте
23 января 2013 г.; опубликована
30 января 2013 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2013.007