RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 009, 31 стр. (Mi sigma792)

Эта публикация цитируется в 11 статьях

Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations

Aristophanes Dimakisa, Folkert Müller-Hoissenb

a Department of Financial and Management Engineering, University of the Aegean, 82100 Chios, Greece
b Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany

Аннотация: We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to appear in the case of the $D$-dimensional vacuum Einstein equations with $D-2$ commuting Killing vector fields. A large class of exact solutions is obtained, and the aforementioned reduction is implemented. This results in an alternative to the well-known Belinski–Zakharov formalism. We recover relevant examples of space-times in dimensions four (Kerr-NUT, Tomimatsu–Sato) and five (single and double Myers–Perry black holes, black saturn, bicycling black rings).

Ключевые слова: bidifferential calculus; binary Darboux transformation; chiral model; Einstein equations; black ring.

MSC: 37K10; 16E45

Поступила: 12 ноября 2012 г.; в окончательном варианте 29 января 2013 г.; опубликована 2 февраля 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.009



Реферативные базы данных:
ArXiv: 1207.1308


© МИАН, 2024