RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 018, 20 стр. (Mi sigma801)

Эта публикация цитируется в 32 статьях

Bispectrality of the Complementary Bannai–Ito Polynomials

Vincent X. Genesta, Luc Vineta, Alexei Zhedanovb

a Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada, H3C 3J7
b Donetsk Institute for Physics and Technology, Ukraine

Аннотация: A one-parameter family of operators that have the complementary Bannai–Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai–Ito polynomials and also correspond to a $q\rightarrow-1$ limit of the Askey–Wilson polynomials. The eigenvalue equations for the CBI polynomials are found to involve second order Dunkl shift operators with reflections and exhibit quadratic spectra. The algebra associated to the CBI polynomials is given and seen to be a deformation of the Askey–Wilson algebra with an involution. The relation between the CBI polynomials and the recently discovered dual $-1$ Hahn and para-Krawtchouk polynomials, as well as their relation with the symmetric Hahn polynomials, is also discussed.

Ключевые слова: Bannai–Ito polynomials; quadratic algebras; Dunkl operators.

MSC: 33C02; 16G02

Поступила: 13 ноября 2012 г.; в окончательном варианте 27 февраля 2013 г.; опубликована 2 марта 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.018



Реферативные базы данных:
ArXiv: 1211.2461


© МИАН, 2024