RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 024, 21 стр. (Mi sigma807)

Эта публикация цитируется в 4 статьях

Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type

Peter J. Vassiliou

Program in Mathematics and Statistics, University of Canberra, 2601 Australia

Аннотация: The Cauchy problem for harmonic maps from Minkowski space with its standard flat metric to a certain non-constant curvature Lorentzian 2-metric is studied. The target manifold is distinguished by the fact that the Euler–Lagrange equation for the energy functional is Darboux integrable. The time evolution of the Cauchy data is reduced to an ordinary differential equation of Lie type associated to ${\rm SL}(2)$ acting on a manifold of dimension 4. This is further reduced to the simplest Lie system: the Riccati equation. Lie reduction permits explicit representation formulas for various initial value problems. Additionally, a concise (hyperbolic) Weierstrass-type representation formula is derived. Finally, a number of open problems are framed.

Ключевые слова: wave map; Cauchy problem; Darboux integrable; Lie system; Lie reduction; explicit representation.

MSC: 53A35; 53A55; 58A15; 58A20; 58A30

Поступила: 27 сентября 2012 г.; в окончательном варианте 12 марта 2013 г.; опубликована 18 марта 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.024



Реферативные базы данных:
ArXiv: 1303.4165


© МИАН, 2024