RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2013, том 9, 026, 23 стр. (Mi sigma809)

Эта публикация цитируется в 8 статьях

A Quasi-Lie Schemes Approach to Second-Order Gambier Equations

José F. Cariñenaa, Partha Guhab, Javier de Lucasc

a Department of Theoretical Physics and IUMA, University of Zaragoza, Pedro Cerbuna 12, 50.009, Zaragoza, Spain
b S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata - 700.098, India
c Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, Wóy-cickiego 1/3, 01-938, Warsaw, Poland

Аннотация: A quasi-Lie scheme is a geometric structure that provides $t$-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the previous literature, and other relevant differential equations, which leads to derive new constants of motion for families of second-order Gambier equations. Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions of Riccati equations, linear systems, and $t$-dependent frequency harmonic oscillators.

Ключевые слова: Lie system; Kummer–Schwarz equation; Milne–Pinney equation; quasi-Lie scheme; quasi-Lie system; second-order Gambier equation; second-order Riccati equation; superposition rule.

MSC: 34A26; 34A05; 34A34; 17B66; 53Z05

Поступила: 26 сентября 2012 г.; в окончательном варианте 14 марта 2013 г.; опубликована 26 марта 2013 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2013.026



Реферативные базы данных:
ArXiv: 1303.3434


© МИАН, 2024